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Abstract

This report describes a new method for determination of the geopotential, or the
equivalent geoid. It is based on Satellite-to-Satellite Tracking (SST) of two co-orbiting low
earth satellites separated by a few hundred kilometers. The analysis is aimed at the GRACE
Mission, though it is generally applicable to any SST data. It is proposed that the SST be viewed
as a mapping mission. That is, the result will be maps of the geoid or gravity, as contrasted with
determination of spherical harmonics or Fourier coefficients. A method has been developed,
based on Geophysical Inverse Theory (GIT), that can provide maps at a prescribed (desired)
resolution and the corresponding error map from the SST data. This computation can be done
area by area avoiding simultaneous recovery of all the geopotential information. The necessary
elements of potential theory, celestial mechanics, and Geophysical Inverse Theory are described,
a computation architecture is described, and the results of several simulations presented.
Centimeter accuracy geoids with 50 to 100 km resolution can be recovered with a 30 to 60 day
misston.
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[ Introduction

This analysis is focused on the Gravity Recovery and Climate Experiment (GRACE)
mission, to map the earth’s gravity field, or geopotential. The GRACE mission concept was
based on extensive experience with dynamic satellite geodesy, using well established methods
and with the confidence based on very good results. Though there is no doubt that the existing
methods will satisfy the mission requirements, we propose here an alternative methodology for
analyzing the mission data that can provide a different type of result, some analysis advantages,
and possibly lower analysis cost. The basic objective is to determine regional geoid maps,
directly from the satellite-to-satellite (SST) tracking data, without recourse to global spherical
harmonic solutions. Regional maps could be produced based on 30 to 60 days of mission data,
allowing investigation of temporal changes with monthly variation.

This report lays out the methodology for this mapping analysis, providing the necessary
elements of potential theory, orbital mechanics, and estimation theory. It is apparent that with
0.5 p/sec SST data, centimeter accuracy geoid heights, with 50 to 100 km spatial resolution and
monthly temporal resolution, can be recovered. Though, there are still details to work out, this
objective can be met.

The concept of a Satellite-to-Satellite Tracking (SST) mission is simply to calculate the
gravitational force acting on a spacecraft from changes in its measured velocity. The satellite
itself is the sensor, and its velocity, the observable. This is pictured notionally as follows.
Consider a satellite in orbit around the earth approaching a region of excess mass. As the
satellite approaches, it is accelerated toward the mass, and after passing the mass, it is
decelerated. By measuring the time history of the velocity variation, an estimate of the
magnitude and position of the mass excess can be deduced. Or course, the actual situation is
much more complex for several reasons: the structure of the earth's mass distribution is very
complicated, other forces act on the satellite, only one component of the satellite velocity is
measured from another satellite, and the observations contain errors. In the SST concept, the
second satellite could be very high, say in geosynchronous orbit or on another planet — the high-
low configuration. Alternatively, the second satellite could be in the same low orbit, trailing the
first low satellite — the low-low configuration. In the low-low case, the second satellite would
experience similar velocity changes, but at a later time.

SST tracking has been realized in a number of missions. The earliest example of
Doppler tracking a satellite from a point not on the body being studied is the mapping of the
lunar gravity field by means of lunar orbiters tracked from the earth [Muller and Sjogren, (1968)
]. Since this remarkable success, there have been notable Doppler tracking experiments for
earth satellites: the tracking of Geos-3 from the ATS geosynchronous satellite. These are
examples of the high-low configuration. There have since been numerous examples of tracking
around Mars, Venus, and Eros: also examples of the high-low configuration.

A number of analytical strategies have been employed. The most common is to treat the
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SST data in the same way as other tracking data, and determine spherical harmonic coefficients
of the body under consideration by variants of the method of least squares: an estimation
problem in a finite-dimensional vector space of parameters. There are significant computational
issues with global solutions [Bettadpur et al., (1992) ]. In any case, these solutions would
benefit from the high accuracy of the SST tracking data, but do not make any use of the unique
geometry of the SST data. These ideas have been applied to estimating gravity anomalies
[Vonbun et al., (1978) ]. Alternatively, the analysis can be done as a mapping of the acceleration
field at the satellite's altitude [Muller and Sjogren, (1968) ]. Studies have also been done on
mapping the acceleration of potential at the earth's surface [Colombo, (1981) ; Rummel, (1975) ,
Rummel et al.,(1978) ]. Studies of recovery of fourier coefficients at satellite altitude have also
been made [Kaula, (1982) ].

The analysis described in the sequel employs a generalized inverse theory (GIT) [Backus
and Gilbert, (1967) ; Backus and Gilbert, (1968) ; Backus and Gilbert, (1970) ; Backus, (1968) ]
to convert the observed velocity measurements to a mapping of surface values of geoid height.
The ill-posed boundary-value problem and the unstable downward-continuation problem
[Bullard and Cooper, (1948a) ] are addressed in a way that the additional assumptions used to
obtain the solutions are clearly identified and an error estimate is found. On the way to this end,
a semi-analytical solution of the problem of calculating satellite perturbations caused by the
anomalous potential will be formulated. Such a solution provides insight into the proposed
measurement mapping, and significant computational economies. It gives a direct way to
calculate analytically partial derivatives for the observable (velocity) with respect to the desired
end product (the geoid). The analytical solution also allows the kernel function in the
generalized inversion to be calculated directly.



11 Background

It is seen to be obligatory in this section to provide a prolix, far ranging, penetrating, and
relevant review of the scientific objectives and uses of the analysis to be described in the sequel
as well as a similar critical — in the classical sense - review of the past work. Since there are a
number of carefully written reports available,[anon., (1979); anon., (1997); Kaula, (1970);
Nerem et al., (1995 Aug 10)] this discussion will be limited to a few remarks on the method.

Before, October 4, 1957, individual surface gravity measurements were made and
essentially local gravity or geoid maps produced. Attempts to produce global gravity, or geoid,
models from these data produced rather simple ones. Tracking of artificial earth satellites very
soon produced significant improvement in knowledge of the global gravity field. The difference
was that satellites provided a global sensor, that allowed measurement of large scale features of
the geoid. In the succeeding years, analysis of tracking data has produced remarkable results, all
based on using the integrating property of satellite motion. Combining the large scale
information, from satellite tracking, with the small scale information from surface
measurements -- surface gravity or more recently satellite altimetry -- has produced combined
models of remarkable resolution and accuracy. This has required development and refinement of
algorithms and orbit computation methods for determination of spherical harmonic
representations, which will be referred to as classical satellite geodesy..

Satellites provided two significant advantages. First, orbital motion samples large scale,
long wavelength, features of the geoid. Second, satellites can quickly sample the geoid
everywhere. The idea that a satellite samples the geoid everywhere was first dramatically
shown, not for the earth, but for the moon by Muller and Sjorgen [Muller and Sjogren, (1968) |
with observation of MASCON’s. Though the geometry is quite different — the lunar orbiter was
observed from the earth where this analysis has two co-orbiting earth satellites, one tracking the
other — the principle is the same: viz that instantaneous relative velocity changes are due to the
difference in potential of the two satellites. So, to proceed in a rigorous way, one needs a
mathematical formalism for: a) the potential mapping, b) the relation between potential and
satellite velocity, and c) an estimation procedure. The estimation procedure chosen,
Geophysical Inverse Theory Spectral Expansion Method (GITSEM), seems to make fewer
assumptions about the form of the model, defining representation basis functions derived only
from the observation geometry. It also provides a rigorous method of solving the downward
continuation problem. The end result is intended to be a direct mapping of the satellite-to-
satellite (SST) tracking measurement to geoid maps — the choice of geoid maps or gravity
anomalies being quite arbitrary. The method can be used for any size map, including a global
one, though in this case there seems to be little advantage of the method compared with a
spherical harmonic expansion. In addition, a rigorous error estimate is also available.

The view represented in this analysis, is to build on the results already available from

classical satellite geodesy geopotential solutions. At present our knowledge of the low degree
and order terms in the spherical harmonic model of the geopotential is quite good. We will
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assume that up to a certain degree and order, a reference field can be adopted. In fact, the theory
and implementation allows one to calculate local corrections to this model if needed. For
example, in this analysis a reference field to degree and order 40 and another to degree and order
90 were used. The derived map is then a correction to this reference model.



I Elements of Potential Theory

The underlying mathematical framework of Geophysical Inverse Theory is based on
potential theory. There are two facets of this discussion: 1) The solution of the boundary value
problem in Geodesy, and 2) The downward continuation problem. There is an extensive
literature on both of these topics ([Heiskanen and Moritz, (1967), Jekeli, (1981); Morit-,
(1980,1989)]), and so we limit ourselves to a few remarks to define the notation and relations
used in this analysis.

From classical potential theory [Kellog, (1953) ], the geopotential, ¥(r,p,1), —
depending on the spherical coordinates r, the distance from the origin i.e. the center of mass of
the earth, ¢, the geocentric latitude measured from the equator, and A, the longitude measured
from an arbitrary point on the equator [/AU, (1983) ] - is harmonic in free space, i.c. isa
solution of Laplaces equation in three dimensional space exterior to all attracting masses, has
continuous second derivatives, and is regular at r=~. Therefore, ¥ is analytic. There are a
number of issues of principle concerning other masses (the earth’s atmosphere, The Sun, Moon,
planets, galaxies etc.) that we treat with various approximations, viz, the atmosphere is modeled
as an equivalent surface layer, the sun, moon, and planets are moved to « by removing their tidal
potential, and the remainder of the universe is regarded has having a negligible effect.
Therefore, given the values of the potential everywhere on a known surface enclosing all the
earth’s attracting masses (the Dirichlet boundary value problem), ¥ is uniquely determined
everywhere outside that surface.

If we chose the surface to be a sphere of radius R, centered at the earths center of mass,
then ¥ is given by Poissons Integral Formula [Heiskanen and Morit=, (1967), p35. Jeffreys and
Jeffreys, (1956,p221)]

12 . s \ . .
R)j J- ‘I’(R,w,/tl;oswdwdi 3)

where, p, the distance from the mtegratlon point on the sphere (R,9’,1”) to the sample point
(r.@.A) is given by

lIJ(r ¢9’1) -

A= Ow—-

p =r'+R —2rRcosy (32)
and , . .
cosy = singsing + cosgcos@ cos(A — A)1 (3.3)

'N.B. We have written these expressions in terms of the latitude, ¢, whereas they are
often written in terms of the colatitide, 6=n/2-¢. In this report we will freely use both
conventions, strictly adhering to this notation.
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For example, R can be chosen to be: a) just below a satellite orbit, or b) small enough to just
enclose all the attracting mass (6384403m).

Poissons Integral Formula makes no assumption about the mathematical form of ‘¥, only
that it be harmonic and regular at infinity. However for both theoretical and practical
applications, much use is made of spherical harmonics: solutions of Laplaces equation by
separation of variables. Now Laplaces equation in spherical coordinates is:

, Y N Y Va4 1 Y
r +2r——+ —t

5 2 an ¢ + 2 2

17 o & op° op cos @ o4
Assume than one can write ¥ as:

¥ = R(r)P(@)L (). (3.5)

Introducing the constants n(n+1) and m’ (m and n turn out to be integers) we find:

=0. (3.4)

R(r)= , (3.6)
-(n-1)

»
P(¢)=F,,(sinp) 3.7)
the ubiquitous Legendre functions, and

cosmA
I'(A)=|. : (3.8)

sinmA
Conventional usage is to call n the degree of the Legendre function and m the order of the

. o ) cosmA
Legendre function. The combination P, (sin @)| | are sometimes referred to as surface
sin mA
' ' ’ . |cosmA .
spherical harmonics and | | P (sing) . are sometimes referred to as solid
4 el sinmA
spherical harmonics. It has also common to denote the surface harmonics as:
. cosmA
Y, =P, (sing) . (3.9)
sinmA
The functions Y,,, are orthogonal. That is when integrated over the sphere:
P_(sing@)cosmAP, (sinp)cosmAdo =0(s = n,or,r #m
” P_(sin@)sinmAP, (sinp)sinmido =04s# n,or,r #m (3.10)
° |P_(sin@)cosmAP, (sing)sinmido =0 always

with
do = cospdpd A (3.11)

It is convenient to define fully normalized Legendre functions ]_’nm (sin @) such that the integral
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over the sphere is:

— cosmA|)’
H(P,,m(smqo) . D do=4r. (3.12)
: sinmA
We have:
— —m)! cosmAi
Psing) o= 12-8,,)2n+ Db (6ing) " 313
sinmA (n+m)! sinmA

with the familiar Dirac Delta function &, =

Olnzm _ '
. Formulae for calculation of P, (sing)
lin=m

can be found books on Mathematical Physics and Physical Geodesy. Great care must be given to
accurate calculation for high degree and order functions and their derivatives.

It is easy to see that outside a sphere of radius R, enclosing all attracting masses, the most
general solution, that is regular at <, can be written:

Y(r,p.4)= ZZ( ) sm(p)[C cosmi +S, smm/l] R<r<mw. (3.14)
n=0m=0

where G is Newtons Gravitational Constant (6.67423+0.00009 x 10" cm®/(gram sec?), and M is

the mass of the solid earth, ocean, and atmosphere, GM=3.98600.44177+0.0000000010 x 10%°

cm’/sec’. Now if, as supposed with Poissons Integral formula, ¥ is known everywhere on the

sphere r=R enclosing all attracting mass, then ¥(R,9,A) can be represented in terms of a surface

harmonic series given by (3.14). The determined geopotential coefficients — C. S — then

nm?

provide the representation of ¥ everywhere outside R.

The downward continuation error (DCE) is usually framed in terms of this
representation. The DCE arises from the need to know ¥ at or near the earth’s surface, a point
where r<R, and (3.14) diverges. In principle, one can obtain a series, using spherical surface
harmonics, that represents \¥, provided one assumes knowledge of the attracting mass
distribution above the sphere of radius r.

Y (r ZZP sm(p)[C rycosmi + S smml]0<r<R (3.15)

n=0 m=0
It must be empha512ed that the resulting representation, ¥~ has potential coefficients that

depend onr - the distance from the earth center of mass to the desired point: e.g. the earth
surface or geoid — i.e. !.;"((,)) r=R[Jekeli, (1981) ,p36]. This is not a representation in solid

spherical harmonics, and that the coefficients in (3.14) and (3.15) are not comparable for r<R.
Other than a representation of the potential for r<R, given knowledge of the coefficients

Em(r),gm(r) it is unclear how to use this representation.

In the practical application of (3.14) to satellite orbits, the infinite sum is truncated to
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terms n < 71 for two reasons, one practical — it is impossible to numerically perform an infinite
sum — and the other fundamental. The measurement(s) to be analyzed are of finite accuracy,
and there is a point where higher degree and order terms have no sensible affect, and are
therefore ignored”. Therefore, no matter what data analysis techniques are used, e.g. satellite
perturbation analysis or direct mapping of acceleration of potential difference, the resulting
geopotential is smoothed, or averaged, usually characterized by the limiting degree of spherical

harmonic representatxon ie. P

¥ (r,p,A ZZ( j P { smqy{C cosmA+S smml] R<r<m (3.16)
n=0 m=0
There is also the parna] sum of (3.15), i.e..
Y7 (r, 0. l)-—ZZP sm(p)[C r)cosmA+S_ smm/l}0<r< R (3.17)
n=0m=0

Now for r>R, a spherical harmonic coefficient representation of ¥ has two sorts of
errors: 1) errors of commission, i.e. errors in the coefficients themselves, and 2) errors of
omission, i.e. errors due to ignoring the higher degree and order coefficients. If we let the true

geopotential be W' , and the true geopotential truncated be Y we can define the error of
commission as:

gc(llﬁ) — Y (3.18)

and the error of omission as;

5(‘{’): - = ZZ() squ)[C cosmA +8, smmi]R<r<oo (3.19)

g
n=n+1m=0

Now the error of commission is compounded by the present practice of evaluating (3.16), for
r<R to obtain smoothed values at the earth’s surface [Bullard and Cooper, (1948b) ]. which is
convergent everywhere. However, the errors in the coefficients are amplified by (R/r)" for each
order. If we contemplate fields of degree 360, then the error amplification of the degree 360
terms for a geopotential representation derived from data on a satetlite at 450km altitude would
be ((6378+450)/6378)*=4.6x10'°. For degree 180 the amplification is only 2.14x10%. Errors of
commission will grow very dramatically. Though one expects the higher degree and order
coefficients to be smaller than the lower degree ones, (Kaula’s rule of thumb [Kaula, (1966) ),
they are also more difficult of determine, and consequently the uncertainties will be larger.

Second, we have the representation error: the difference between (3.16) and (3.17):

g,(li’) I (3.20)

2This assumes that the size of higher degree and order terms — as measured, for example,
by the degree variances — continue to decrease, as models suggest [Kaula, (1966) ]
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which depends on the degree and order of series truncation. In a careful and detailed analysis
Jekeli, [Jekeli, (1981) ] has shown two critical results. Jekeli combines the error of
representation (3.20) and the error of omission (3.19 suitably generalized for r<R as 3.17) as the
downward continuation error — the error of commission is not included. Jekeli, with 7 =300,
finds (tables 3 and 4) that the DCE largest near the poles o(g,) <0.090 mgals (0.290 mgals max)
gravity anomaly and o(g,) <0.042 cm (0.14 cm max) geoid height. Second, by seeking
anomalies averaged over a spherical cap of about 1.4 degrees (tables 6 and 7), the DCE - again
largest at the poles, is estimated to be o(e,) <0.004 mgals (0.014 mgals max) gravity anomaly
and of(e,) <0.0020 cm (0.0066 cm max) geoid height. Therefore the conclusion of Jekeli
[Jekeli, (1981) , p127] “The downward continuation errors depicted in tables 3 through 7 are
completely insignificant with respect to anticipated measurement accuracies of 1 mgal and 10
cm in the gravity anomaly and geoid undulation, respectively.” And, .. the estimation of point
or mean gravity anomalies and geoid undulations (height anomalies) using the outer series
expansion to degree 300 anywhere on the earth’s surface is practically unaffected by the
divergence of the total series.” This issue was discussed again [Wang, (1997) ] who confirms
Jekeli’s analysis: viz “ .. , the method of smoothed analytical downward continuation can be
used to determine the earth’s gravitational potential to any required accuracy.”

The basic potential theory formalism has been presented, and the relevant formulae
defined for use in this analysis. The downward continuation error of commission is controlled
by suitable averaging, which is inevitable given a finite spacing of the data and a finite number
of observations. Therefore we adopt the earth equatorial radius (R=6378137 m) for the
reference sphere. We see that the essential problem of downward continuation is controlling the
growth of numerical error of commission. We turn to data analysis methods that provide tools
for this.
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v Orbital Theory

In discussing the recovery of gravity anomalies, Ag, or geoid heights, N, with SST data, it
is convenient to have analytical formulae relating satellite position and velocity (the state vector)
to the desired quantity. Such formulae also enable the sensitivity, or partial derivatives of
gravity anomalies and geoid heights to be more easily obtained. Otherwise, one must resort to
costly numerical methods, with consequent loss of generality and insight. With this motivation,
we proceed on two levels. First, some simple illustrative relations are obtained. Then a more
complete treatment will be developed, for use with the actual data analysis.

Consider, first, the theorem of conservation of energy for the satellite orbit. Of course,
drag and radiation pressure perturbations would have to be taken into account if the following
relationships were used for analysis of actual data. Let the total potential be represented by ¥,
which for convenience, can be separated into a reference potential, p/r+U, and an anomalous
potential, T, 1.e.

W=£+U+T 4.1
r

In the conventional physical geodesy notation, U is the normal potential corresponding to that of
a reference ellipsoid. However, here we prefer to view it as a reference, or adopted potential,
with T being the remaining (unmodeled) part that we seek’. If we write the kinetic energy as
Yamv?, with the vector components of velocity along track (v,), cross track (vy), and radial (vs),
then

|
E(V_; +v, + v,?) + ¥ = constant (4.2)

For a satellite with small eccentricity, we can treat the along track velocity as the unperturbed
velocity, v,, which gives v,=v +8v,, v¢=0 v, and vy=0 vy. Therefore, to first order in small
quantities, we have

*Some confusion is bound to occur because the anomalous potential, or disturbing
function, is generally denoted by R in celestial mechanics, and T in geodesy. Also the sign
convention for potential in physics is reversed from that in celestial mechanics and geodesy.

2=
Here the force F = V¥ =m

R Finally, for convenience in this section, we refer to the
t

product GM=p.
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&, =1/ (4.3)

A%

0

This formula was first derived by Wolf [Wolf, (1969) ] and subsequently used by many others.
For small eccentricity satellites, equation (4.3) gives the change in along track velocity as a
function of the potential in space (i.e. position and time) to about 10%, the errors arising from
the change in radial distance owing to T interacting with u/r+U. Equation (4.3) is a direct
mapping to the potential into the along track velocity, and could be used as a first approximation
for inverting observations of dv; to determine T.

For a more complete theory, following the treatment in Brouwer and Clemence [Brouwer
and Clemence, (1961) ], using the potential, ¥, we can write the equations of motion as

d'x i AU +T)

a T r &

&'y v AU+T)

—ips= (4.4)
dt pr‘ &

dz L X AU+T)

ar &

where p=GM=3.986x10%° cm’sec? and

ri=x*+ y2 +2z° (4.5)

If the coordinates are r, u, and ¢, where the longitude from the equator crossing in the orbit plane
is u=f+m, (true anomaly, f, plus argument of perigee, ®), and @ is the latitude® then the
equivalent differential equations of motion are:

2 2 2
I oo )0 i AUT)

| r o
—(r2 cos’ qp@) _Au+T)

dt oh
—‘i(r2 iﬂ] +r? sin qocoso(—d—uj _AU+T)
dat\ dt dt op

(4.6)

*The derivation is general. Below, the orbit plane will be used as a reference, and
perturbations in along track (du), cross track (dw) and radius (8r) will be developed. In this case
the latitude, ¢, will become the cross track, w, component.
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To obtain an expression for the potential, U+T, as a function of position (and time), we
begin by assuming that the potential on the earth’s surface at =R is (U+T).(R.9.,A), where R 1s
the radius of the earth and A is the longitude. To express T in an inertial system appropriate for

equation (4.4) or (4.6), we have (U+T),,,(R @, A~ 9(1)), where é(t) is the sidereal angle at the

time in question. For the moment we ignore the effects of a moving equator (Gaposchkin,
(1973) 1.

Following the discussion in section II1, since (U+T)R,¢,A) given on a sphere is the
Dirichlet boundary condition for Laplace’s equation external to the sphere =R, we can use the
basic results from potential theory to obtain T at any point in space outside this sphere, see
section I1l. Therefore we can expand T in terms of orthonormal base functions (associated
Legendre polynomials) as

n-m m=n

(U+TXR, (DJ)——ZZP (smq))[  CosmA+S - sin ml] (4.7)

n=2 m=0

which, using the properties of solutions of Laplace’s equation in spherical harmonics, can be
upward continued as

"‘Z m=

(U+T)r, 0,4 Z Z( ) 3 (8D (o)[Cnm cosmA+S sin m,l] (4.8)

n=2 m=0

Alternatively, since U+T is harmonic in space, we can use Poission’s integral to obtain

WU+ TYro. ) =& R)j j (U+T)(R¢ 4) cosg'dg'dA' (49)

A'=09'=-1/2

where p is the distance between the integration point R,¢’,A” and the sample point r,9,4; it is
often written as

p=r’+R*-2rRcosy (4.10)
v being the central angle, which can be expressed

cos y = sin@cos @'+ cos@p cos @' cos(A — A'). (4.11)

Now, assume the motion of the satellite is given in two parts: i.e.
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x=x,+d

Y=Y, + (4.12)
z=z, +¢&

where x,.y,, and z, satisfy

d’x, NEA.Y
a YT a
d’y y, U

g4 y=L=_"_ 4.13
dt? a ro3 &, (3-13)
dzz" + Z_" = _égj_
a YT s

and r=r,+or. We also have

dU+T)=2YED 4 AUAT) p AULT)

(4.14)
du+y=2Y 0 4 AULT) p AUAD) 4,
27
and
P _ AU+, AU+T)  AU+D) (4.15)

ok 174 o &

Now, multiplying (4.4) by 2dx,2dy, and 2dz respectively, adding, and integrating the
result we have

2 2 2
(‘_i"_j +(i‘i} +(i’i) _3£+£=2J'd(u+r) (4.16)
dt dt dt r a

where p/a is an arbitrary constant of integration. This is chosen such that

2 2 2
(&) +(£’L) +(d~,,) _2“+ﬁ=2jdu 4.17)
dt dt ar r T a
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is satisfied. In terms of polar coordinates (4.16) becomes

dr)2 (a’u)2 z(d(p] 2,u H
— +r +rof— =21dU+T 4.18
(dt s ) T Jaw+T). (@19

Again, multiplying (4.4) by x,y,and z respectively, adding, and using (4.15) we have

2 2 2,
xdf+ydf}+zdf+ﬁ=rM (4.19)
dt- dt” dat- r or

or in polar coordinates

rd—.’:—r2 cos’ w(f’ﬁ} —rl(d—(p] +£="M~ (4.20)
dt dt dt r dr

Adding (4.18) and (4.20) we have

2.2
Ldr —ﬁ+£:2j'd(U+T)+r
a

1 AU+T)
2 dr’ r '

(4.21)

Now using r=r,+8r, and subtract the reference orbit

2.2
—;-a;t’;o ——"i+fi=2de+r%/— (422)
7, a o

to first order in small quantities dr and T we have

2
d(rd) Py 2de+rér—+5r—qy—0,. (4.23)
ar r 74 Zg

We also have
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d’& u ar 1 1

e +r_3§x:—2+“\7_r—3)ng"

d’éy 11

o +f§'@’:—i+#:§'r—3)y=Qv : (4.24)
& wu. o (1 1

dr’ +;f&_—ﬁz+# 3_7]2— ;

Now, a solution to (4.23) and (4.24), due to Hansen, can be found ([Brouwer and
Clemence, (1961) ] chapter XII1) for the perturbations in radial (8r), along track (8u) and cross
track (dw) and can be written:

& = [Xsin[f - /' 1df"

du= | [ [rar -2 é,r-]df (4.25)
dw= [Zsin[f - f'1df"
where

3
x="-o :L[ZIdT+r~5£+5rﬁ:I
&

up L 174
_rd (4.26)
up ou
s
HD W

where p=GM=n_’a,’ and p=a(1-¢?). Here, the integration variable is the true anomaly, f, but for
practical numerical implementation, we will use time as the variable of integration, using

df = n(ﬁj V1—-e’dt = ndt (4.27)
r

In equation (4.26) we interpret dT as

de—ﬂ—T—dr+gdu+gdw (4.28)
074 M W
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i.e. the integral along the satellite path. Therefore IdT = AT, the difference in potential from

a reference point on the orbit to the point of interest.

Now, we measure relative velocity, and can obtain the perturbation in velocity — in

radial, across track, and along track direction — as:

v ~-‘15r———"——-(ﬂ)3 {[Xcos(f—f')df'—Xsin(f—f)
T dr (1-e*)* \r ; ?
d n AN

3frs
:_—n———(%) f[Zcos(f—f')df’—ZSin(f‘fo)

For illustrative purposes, these expressions can be simplified for small eccentricity. Of course,
in all numerical calculation, the full expressions (4.25) and (4.29) are used. The simplified

expressions are:

Xz_z—[zj‘dT+aér£+5r§]—}
n°a V74 o
p_ L ar 430
n‘a ;M @30
oL
n‘a
Now
2 . 2 . 1 (0’7‘ 5r0’Uj.
&: - X - d': - Y o 1 Loy N '
n_aj sin(f - f)df n_ajsm(f f)[def+n2j = sin( f = /)df
(4.31)
and
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&, = n{ [ X cos(M — M)dM- X sin(M - M,)
&v. = n{ j YdM - 2&} (432)
& = na{ [Zcos(M - M)aM-Zsin(M - M,)

Equation (4.31) defines 3r in terms of (8r/a)}(dU/Jr), and can be solved by iteration, as (JU/or) is
of the order 10”°. Now we can rederive equation (4.3) using the second parts from equations
(4.30) and (4.32)

ov, =n(a ,l - T—Z&) =—1—T—2n5r
n-a-

(4.33)
na
where we can make the identification v,=na. Now the second term can be written
GM GM GM & 1 d(GM
N =-—F=——s&=—— _,:——(—) o (4.34)
na naa“ v, a- v, dr\ r

which is simply the change in velocity due to the perturbation, dr, with the central force term, as
pointed out earlier.

We can now formulate the observable, Ap. We

have the satellites, P and Q, with position #,, 7, and T .ﬁ‘\\ .
- — ) N , ,_, —
VpVy . The relative position between P and 8 is '. [ ,,g;;\;i »
p=r P FQ ; ’l
(4.35) }.
the distance between them is \r
P=NP P (4.36) ‘
and the relative velocity is

j):ﬁ-(i?},—\—zg)_ |

(4.37) '
Now, we suppose that we have a reference orbit, Y
FposPoos Voo Vg, » and the true orbit, 7, 75, Vp, Vj,

Figure 4.1 Geometry of Satellite Perturbations

v
/

The difference, or perturbation, to be modeled is é?P,(YQ, ﬁp,(WQ. Now consider the residual,
or difference between the observed, assumed to be the true, relative velocity, and the relative
velocity computed from the reference orbit

Ap= D=, = =P (Fpy = ;)

(4.38)
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To define the algorithm for calculation of the perturbed position and velocity, 7, v, from the
unperturbed position and velocity, 7, V_, and the along track, 8u, across track, dw, and radial

perturbations, or, (Figure 4.1).

We use the unit vectors

w="r Xy\ﬁfx\‘z)-(?xv) (4.39)

for the radial, cross track and along track directions. More precisely, the along track unit vector
is normal to the radius vector, and not along the velocity vector, to be consistent with the
definition of the along track perturbation. So we can write

duv . _ . _
5;—=u1 Y, —u, -V,
t
W A — -~ —
57:W1'V1—W0'V0 (4.40)
!
a . _ . _
-C-i_t— = 1 1 ro ‘ vo
These relations lead to the perturbed velocity
]
u gt
—-_— ~ ~ ~ ~ — A~ ~ A w
v, =[a, W A]w, v,)« [ w A 5—‘; (4.41)
At
o dr
o —
dt |

Now, with two satellites (P,Q) at positions x, and x,, the unperturbed satellite to satellite
range p, 1S

P, = \/(fpo —fQo)'(fPo - an) (4.42)

from which we can obtain the unperturbed range rate
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% =p =P (gp _fQO) (4.42)

The corresponding perturbed range rate is

P = X (x;m - le) (4.42)
If we define

Ay =[ty, Wy Py (443)
the perturbation in range rate, Ap = p, — p, , is

Ap=p- {AmA;ofPo + Am[&‘wrP] - AQlAéono - AQl[auwrQ ]} =P, {i”" - fQ"}
(4.44)

With this formalism, we give an example of this calculation. The full Cartesian
equations of motion for perturbed (true) and unperturbed (reference) orbits are integrated, in this
case with a 4™ order Runge-Kutta integrator with variable step size error control, set at 107¢,
using 20 digit precision calculation. Both models include the quadrapole moment, J2. The
twenty four equations of motion are integrated. The quadrature of (4.25) and (4.29) is done
following the presumptive data to be obtained from the GRACE mission. We assume equal time
spacing of the data, nominally 10 seconds, and use a modified Simpsons rule [Hamming, (1973)
] quadrature formula. Using the unperturbed position and velocity, the six perturbation
equations (4.25) and (4.29) are integrated. In fact the time spacing for the Simpsons rule was set
to 1 sec, 2 sec, 5 sec, and 10 sec. The 10 sec quadrature interval had some error build up: for
actual data analysis, the perturbations should be calculated with a 5 sec or smaller time step.
This is not difficult, as the reference orbit can be obtained at any time resolution.

For illustrative purposes, two perturbing potential cases will be shown. The first, isa
single geoid height anomaly in the subsatellite path, and the second is with two geoid height
anomalies separated by 1 degree, =110 km, of equal size and opposite sign: a classical dipole.
These will illustrate some important properties of the perturbations, to be used in developing the
data analysis methods. Table 4.1 gives the initial orbit elements of the trajectories (the cartesian
coordinates are used), and table 4.2 defines the anomalous potential.
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Table 4.1 Initial Orbit Elements

Satellite P Satellite Q
Epoch (MJD) 51478.000 51478.000
X (cm) 6.7743733337811697E+08 6.7743733337811697E+08
dx/dt (cm/sec) -2.2620699340959200E+04 | 2.2620699340959200E+04
y (cm) 1.0462759319408060E+06 -1.0462759319408060E+06
dy/dt (cm/sec) 4.0121087168058562E+04 4.0121087168058562E+04
z(cm) 1.9964134070442688E+07 -1.9964134070442688E+07
dz/dt (cm/sec) 7.6555594831398176E+05 7.6555594831398176E+05
a(cm) 6.778E+08 6.778E+08
e 0.0001 0.0001
[ (deg) 87.0 87.0
M (deg) 1.69 -1.69
Q (deg) 0.0 0.0
o (deg) 0.0 0.0
Table 4.2 Anomalous Potential
Case ¢ (deg) A (deg) H (cm) Size (km)

I 45.0 325.0 400.0 110.0

II 45.0 325.0 400.0 110.0

11 46.0 3251 -400.0 110.0

Now, we let the unperturbed satellite position and velocity be X, ¥V, , and the
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perturbed position and velocity be Xp,,Vp, . Figure 42
So in figure 4.2 we show the change n gl
velocity’,
Ovp = Vp = Vp, for satellite P for case I, and dv=vPL-vPo
figure 4.3 shows the change in radius vector,

Orp = rp, — Ip, for satellite P. These are
obtained from numerical integration of the

equations of motion. If the analytical theory amt j ‘%; -
for 6v,,0r, were plotted on the same graph, : | \/ ]
they would overlay the numerical result. asal- /

Figure 4.4 shows the difference in the i

numerical and analytical theory for 6v,0r, . sa] - - 1
The rms difference between the numerical and bt

0008 - ﬁ\

ov(cm /eee)
—

Figure 43 _olem  ceme) . JF‘C.““ Ov , #edr aror {cm/eec) Case |
T T

o 4 i n*(dr[numerical]-dr[theory])

dr=tPi-rPo

o (e fooe)

)
timg {oa) e {amc)

theoretical perturbations for the two curves is 2.4x10” (cm/sec) = 0.24 (p/sec) and 0.019 cm.
The long period structure in Figure 4.4 is an unmodeled interaction perturbation between ér and
J2. With J2=0.0, the numerical and analytical theory agree to 10'°. The high frequency &v
noise 1s due to rounding error in data input to the plotting program, and not an orbital effect.

Figures 4.5,4.6,and 4.7 are the same quantities for case II, the dipole anomaly. The very
small 6r perturbation (0.18 cm maximum) results in negligible J2 interaction and long period
terms. The reduced or also results in smaller contribution to 8v. For case II, the rms difference

* Strictly speaking we are plotting speed. Velocity is a vector quantity, and we measure
and analyze a scalar quantity, the speed. However, common usage is to refer to this scalar

quantity as velocity. In this discussion, vector quantities are always given as X , or X for a unit
vector, and scalar quantities as x.
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between the numerical and theoretical
perturbations for the two curves is 2.7x10°
cm/sec and 0.0006 cm. N.B. that 0.0006 cm
gives 6.4x107 cm/sec contribution to the
velocity.

We now illustrate the difference in
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Figure 4.7
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]
. . - dv[numerical]-dv{the -
velocity of two satellites, see table 4.1, [aw I-dvitheory] ]
separated by 400 km, at an altitude of 400 km. ]
In figure 4.8 we show the difference in velocity | -wo~ = " 1
thma {oec)
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for case I. Note that here we plot the difference in absolute velocity, not the rate of change in
distance between P and Q. See section V for further discussion of this point. We also plot the
difference in anomalous potential, AT, between P and Q, and the contribution

of nAr = n(or, -

5rQ) to the difference in velocity. Recall that Av~ AT + nAr .

The root

mean square, rms, difference between the numerical and theoretical perturbations are 2.5x10™
cm/sec in differential velocity and 0.0024 cm in differential radius (2.6x10® cm/sec as

24-




velocity). Figures 4.9 shows the same quantities for Case II. For Case II, the rms difference
between the numerical and theoretical perturbations are 2.9x10*® cm/sec in differential velocity
and 0.0002 cm in differential radius (2.3x107 cm/sec as velocity).

Jekeh [Jekeli, (1999) ] has studied this issue using the energy conservation theorem with
quite different objectives. He presents an expression for the corrections to Av to obtain AT. In
this case he proposes to measure these corrections “in situ” with the GPS receivers on the
GRACE satellites. However, the requirements for the “in situ” measurements exceed the
present GPS capability.

The simple simulation shown here demonstrates a number of facts.

1) First we see the, well known, sensitivity of relative velocity to the anomalous
geopotential. Here we have postulated a rather large 1x1 degree 400 cm geoid anomaly.

2) The significant indirect effect of the radial perturbation on the relative velocity. To
make best use of the relative velocity measurement, one must treat this indirect effect. The
radial perturbation also has a significantly different time history (or fourier spectrum), with the
presence of long period effects. This should compared with the potential difference, AT,
contribution, which is more than 10 times larger, and is a local effect confined to the dimension
of the anomaly. This will be discussed further in section V.

3) The efficacy of these formulae in calculating the perturbations, given the anomalous
potential. One use of these equations could be to correct the observed velocity for the effects of
an anomalous potential in an iterative procedure. The relative efficiency of such a calculation,
requiring quadrature over the total anomalous potential field, compared with use of a spherical
harmonic representation would have to be investigated.



\Y Satellite to Satellite Tracking

To define the algorithm for calculation of the perturbed position, x,, and velocity, v,,
from the unperturbed position, x,, and velocity, v,, and the along track, du, across track, dw, and
radial perturbations, dr, (Figure 1).

If we use the unit vectors

F=F

Vi

ﬁ,___rx/
U=wx

FoF
v
JF xT)-(F x ¥)

r

=,

Figare | Geomewy of Swelirte Pertarbaens

for the radial, cross track and along track
directions. More precisely, the along track unit
vector is normal to the radius vector, and not along the velocity vector, to be consistent with the
definition of the along track perturbation.

More precisely, the along track unit vector is normal to the radius vector, and not along the
velocity vector, to be consistent with the definition of the along track perturbation. So we can

write

a%zﬁl'_l_ﬁo v,
aw . _ . _
5—(;{—:w,- W, 0V, (5.1
5%:’\1._1_;0 ‘70

v =[a, W A]w [v,]+[& W% 7 (5.2)
!

>
| em—
% |
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Now, with two satellites (P,Q) at positions X, and X, the unperturbed satellite to satellite
range p, 1S

Po = \/(fPo - jQo)'(fpo - ‘fQo) (5.3)

from which we can obtain the unperturbed range rate

Do om0 4

The corresponding perturbed range rate is

p = 8%~ %p) (5.5)
If we define

Ay =[ay, Wy Py (5.6)
the perturbation in range rate, Ap= p, — p, , is

Ap=p,- {APIA}I’o'?Po + APl[&‘W"P] - AQlAéo'?Qo - AQI[&[WrQ]} - ﬁo '{fPo - x;QO}
(5.7)

The basic observable desired is the difference in velocity, i.e. the intersatellite range rate
is

AV =X, X, —|[%, - X, (5.7)

where the SST measurement is give by (5.5). If we assume that the perturbation is along the
velocity vector, then these are related by

Ap = cos(6, )y, - Xp — €08(6,),/X, - X, = cos(6,)v, — cos(6,)v, (5.8)

where
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cos(6) = (%, —xQ)-x,. (5.9)

i

In the simulations performed here 0 was of the order of 1.0 degrees, cos(8)=0.9998. By
correcting the observed range rate using

AT = Av = Ap/ cos(6) (5.10)

where @ = (6, + 6,)/2 . This correction was applied in the following simulations, resulting

in small improvements consistent with the small size of .
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VI Geophysical Inverse Theory

The two 1ssues concerning the fundamental process of converting range-rate
measurements at satellite altitudes to geoid heights at the earth’s surface are: a) the solution of a
boundary value problem in potential theory with incomplete data on an undefined surface, and
b) the downward continuation of the potential to the earth’s surface in a manner that keeps the
errors within bounds. A related issue concems the regularization of the data so as to account for
the mass between the geoid and the external boundary.

Geophysical Inverse Theory (GIT) allows one to address these issues in one step.. The
GIT motivation and theoretical framework was first introduced by [Backus and Gilbert, (1967);
Backus and Gilbert, (1968); Backus and Gilbert, (1970)] and has had wide application. A good
source for further developments and survey of applications and results, as well as the approach
used here, the Spectral Expansion Method (SEM) can be found in [Parker, (1977) ] and [Parker,
(1994) ]. Therefore, we provide a brief discussion of the approach, and some details of the
implementation for the problem addressed in this study.

One central idea in GIT is to seek a representation of some geophysical quantity with a
continuous function. The determination of a model with a finite number of parameters is a
problem in statistics, e.g. least squares and is not Inverse Theory. In practice, for this continuous
function, with a finite number of errorless observations, an infinite number of models can fit the
data exactly. For selection of one of these models, GIT provides methods for finding the model
that minimizes a norm, 1.e. in some sense the model minimizes some property of the solution.
This is also generalized to data with errors when one would not want to fit the data exactly
anyway. There are many possible norms to chose: study of this is beyond the scope of our
discussion. The norm, used here is to find the solution that minimizes the square of model
integrated over the sphere, i.e. the so called L2 minimization. We will also introduce a
seminorm minimization, introducing arbitrary functions into the solution space that will allow
specific model parameters to be determined. Norm minimization is also a basic concept in Least
Squares Collocation [Moritz, (1978) ], and some comparison of the two methods is given in
[Parker, (1994) ].

The Geophysical Inverse Theory Spectral Expansion Method provides a means to
incorporate error analysis, an arbitrary amount of smoothing, and a direct mapping of the
observable — in this instance range rate, dv, converted to potential difference — to geoid height,
N. As discussed in Section II1, we can adopt a reference potential, U, including the principal
oblateness and other low degree and order reference potential terms that we can assume known
with sufficient accuracy. In addition we can safely assume a sphere of radius a,.=6378.137 km as
the boundary surface for the boundary value problem. Finally we can assume the effects of mass
between this reference surface and the observation are negligible. Furthermore, as discussed in
section IV, the measurement of dv between satellites P and Q, can be processed in a precision
orbit determination calculation using the reference potential, U, to obtain residuals, Av. These
residuals represent three factors: a) the potential difference, AT, between the satellites P and Q,
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b) a perturbation, ndr, due to AT interacting with GM/r, and c) other orbital errors. By
correcting for ndr, and filtering the other orbital errors, the residual, Av, gives an estimate of
AT=T(P)-T(Q).

In this work we consider the fundamental desiderata to be the geoid height, N, often
referred to as geoid undulation, from the reference surface. To relate geoid height to
geopotential we use Bruns formula [Heiskanen and Moritz, (1967), page 85)]

vl (6.1)

where y is gravity on the reference ellipsoid, strictly in this application it is gravity on the
reference surface. Since we are concermed with small corrections to the geopotential, we use
v=978.0327 (cm/sec?)° to scale the geoid model, N, to geopotential, T.

The Poisson Integral Formula (3.1) and Bruns Formula (6.1) allows us to solve the
forward problem, i.e. given a geoid model on a reference sphere, compute the potential at a point
in space, P, outside the reference sphere This is of the form:

T(P)= [g(P.S)T(S)dos =y [&(P,S)N(S)do, 62)

The P, is the position of the observation, S is on the reference sphere and do; is the surface
element of integration on that sphere. The estimate of AT=T(P)-T(Q) is then written

AT(P,Q)=7 f[g(H,S)— g(0,.)IN(S)dos =y J‘G(R,Q,.,S)N(S)do-s (6.3)

Anticipating the treatment of observation errors we can by use:

AT and G, = g (6.4)

(o .

i H

where o, is the standard error of the observation AT | .

AT, =

Now, the functional (6.3) is linear in the unknown, N, and therefore we have a linear
inverse problem. Assuming P; does not lie on the reference sphere, (6.3) is also finite. With n

values, or observations, we have AT i =12,...n there are n kernals in (6.3)

G(S)=G(P,0,,S) i=12,...n (6.5)
Which are n functions of position, S. With a little thought one can see that these are linearly

¢ Geodetic convention defines the unit of 1.0 gal as 1.0 cm/sec®.
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independent, i.e. G; is linearly independent from G; if (P,,Q) is not the same as (P,Q)) .
Therefore they could form a set of basis functions to represent the geoid height on the sphere,
Le.

N(S) = Z a,G,(S) (6.6)

One can show that this has the minimum norm [Parker, (1994),Chapter 1]. Substitution of (6.6)
in (6.3) resulting in the matrix equation for g .

/[0 ]e,]=[aT] (6.7)

where I is a symmetric matrnix, called the Gram matix, with elements

g

I, =T, = [G(S)G,(s)do, (6.8)
4

This system of equations can be solved for «.

Now, the spectral expansion method, SEM, is introduced at this point, leading to great

computational simplification and functional utility. The positive definite matrix I can be
diagonalized with an orthogonal, eigenvector, matrix ® with

OTO=A (6.9)
where
A =diag( A, s Ao s AWA 2 A 2 A 20 A 20, (6.10)

The matrix of eigenvectors, ©, has the usual properties

OO=00" =1 (6.11)

the unit matrix I=diag(1,1,1,....1). The eigenvalues, A, ,are often referred to as the spectrum of
the problem. This diagonal decomposition can be accomplished by methods such as described
in [Golub and Reinsch, (1971) ]. We can now define another set of orthogonal base functions’

’ The association of 1/A; with a, follows [Parker, (1994) ]. This change from associating
1/VA; with both a, and v, , as in [Parker, (1977) ] is quite arbitrary, and is used to facilitate the
seminorm minimization outlined below.

-31-



w,(P)=Y 0 ,G,(P) (6.12)
J

and write for the computed potential

T°(P)= ) ay,(P) (6.13)
where
a,=Y0.a, (6.14)

Substituting (6.9) and (6.14) in (6.7) we find

a, :—!—Z@)J,ATJ. (6.15)
4, J

4

The a, are uncorrelated, i.e. are statistically independent, with the standard error of each
coefficient 174, , i.e.

o, =1/4 (6.16)

These basis functions, (6.13) become more oscillatory as i increases, i.¢. as A; decreases,
and approaches +0, see below for some examples. Consequently, the standard error of the
coefficients increases as i increases. The power of the SEM lies in using A, to select the desired
solution. For example, by eliminating basis functions with high frequency oscillations — i.e.
those functions with eigenvalues less than some minimum eigenvalue, A, — one can obtain a
smoothed solution. Of course, not using the complete eigenfunction expansion, the model,
(6.13) would not fit the data exactly. An alternative would be to add a constant, C, to each A; in
(6.15), which has the effect of significantly reducing the effects of small eigenvalues on the
model: So, in matrix notation we have

[a] = [A + Cl]_l[@’]{AT ] (6.17)

In the case were there are observation errors, using (6.4) in (6.7) and (6.8) leads to a new
solution if the observation uncertainties are different for each observation. Otherwise, the
standard deviation of each observation cancels, and the result is the same. This leads to
considerable computational simplification in this analysis, as we can compute (6.7) once for a
given data set, and analyze the effects of random errors by scaling I', and adding noise to AT.
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In the case were there are observation errors we can compute a statistic for the data set
P Z(AT, AT,C) =n (6.18)

This can be used as the criterion for selecting A,,,, or C. Having selected A, or C one now has
the formal error of commission in the model

Tires) Z—W,( ) (6.19)

where the obvious functions are removed based on selection of A, .

The orthogonal functions (6.12) used to represent the geoid are finite in number, and
therefore define a limited functional representation of the geoid. For example they do not
provide the same representation as the same number of spherical harmonics. The spirit of GIT is
to let the data distribution define the representation. As an aside, it is the distribution of the data
point positions (P,Q) that define the Gram matrix, (6.7), and not the actual data (AT), hence the
representation.

There may be functions that, a priori, we wish to include in the representation. For
example, a constant, low degree polynomial, or spherical harmonic, that would not be included
in the basis (6.12). For example, if the reference potential field, U, has a long wavelength error
that could be locally modeled by a low degree bivanate polynomial. By including such
functions, one cannot obtain a mintmum norm, but can achieve a subnorm minimization. We
can accomplish this expansion of the basis functions as follows. Let us include in the
representation, a linear function:

nk

h(S)= bh(S) (6.20)
k=1

where the b, are to be determined from the data. The model becomes
n nk

N(S)=D aw,(S)+ D bh(S). (6.21)
i=1 k=1

Assuming that h, and y, are independent function of position, S, making the same substitutions
as before, we have the system of equations to solve
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A+Cl 4| |a| |©'AT

- (6.22)
A" 0| |b 0
where the elements of the rectangular (n x nK) matrix are
4, = [h($)G,(S)do (6.23)
and
[Z ] = [@’ ][A] . (6.24)

As with (6.4) each element of (6.24) should be divided by the observation uncertainty when
treating data containing errors. This system of equations has the solution

]=[7(r+ciy 3] Aa+cr]'oor] €2
o] =[A+cI] [0'[AT]- 48] 626

In the application here, we intend to use low degree polynomials, centered in the region of
interest (¢,,A,). These polynomial coefficients are used to account for errors in the reference
potential model, U. The errors are assumed to be long wavelength variations, and can be
suitably modeled with low degree polynomials in longitude and latitude. The polynomial
variables would be ¢-¢, and A-A,. Since the region of interest is of the order of a few degrees,
(<0.2 radians) we choose the variables

&=sin(p-g,)
n=sin(4A-4,))

(6.27)

with the 21 polynomials 1,& 1,8 én.1%,....En*,n’. This removes questions of definition in
computing (6.23).
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Vil Simulations
VII.1 Introduction

In previous sections, necessary elements of, Potential Theory (III), Orbit Theory (IV), and
Geophysical Inverse Theory (V]) to analyze satellite to satellite tracking data for geoid
determination have been reviewed. Now, some numerical experiments will be described that
illustrate how these elements can be combined, and what sort of results may be expected. These
numerical experiments will be progressively more complex and complete, in four stages. First
will explore the nature of the eigenvalues and eigenfunctions that come from the singular value
decomposition. This requires combining the elements of Potential Theory with Geophysical
Inverse Theory. As seen in section VI, these results depend only on the physical geometry of the
measurement, and are independent of
the measurement itself. Second, some
properties of the solution assuming a
direct measurement of potential
difference: accuracy, resolution, error
propagation, and sensitivity can be
shown. For these analyses, idealized
geoid anomalies will be used: blocks
with a dimension of 1.0 degree and 5.0
degrees will be combined. Third, an
orbital simulation using a small number
of idealized blocks is done, to illustrate
geoid recovery using SST
measurements. Finally a number of
orbital simulations will be offered, with
increasing complexity in the desired
geoid, and other orbital effects. For
these the geoid model will be the
EGMO6 [Lemoine and al., (1998) | R VILL g O . B8 Gup anomaly
geopotential model. EGM96 is a
complete model to degree and order
360. For the illustrative proposes of these demonstrations, the EGM96 model will be truncated,
at degree 70, 90 and 180. In ad